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ABSTRACT 

In the United States, there are a large number of people 
suffering from memory and attention problems, for example, 
patients with attention-deficit hyperactivity disorder (ADHD) 
and dementia. People with these problems have difficulties in 
performing activities of daily living and have a low quality of 
life. Currently, there is no existing effective treatment for these 
memory and attention issues in specific cognitive impairments. 
In this paper, we developed a platform of gamified brain-
computer interface (BCI) for cognitive training, which can 
engage users in the training and provide users qualitative and 
quantitative feedback for their training of spatial working 
memory. The user is able to control the movement of a drone 
using their sensorimotor rhythms, recorded by EEG. 20 normal 
healthy subjects were recruited to test the user experience. Our 
system showed the capability of engaging users, good 
robustness, user acceptability and usability. Therefore, we think 
our platform might be an alternative to provide more accessible, 
engaging, and effective cognitive training for people with 
memory and attention problems. In future, we will test the 
usability and effectiveness of the system for cognitive training in 
patients with ADHD and dementia. 

Keywords: cognitive training; gamification; brain-computer 
interface, spatial working memory   
 
1. INTRODUCTION 

Attention-Deficit Hyperactivity Disorder (ADHD) is a 
medical condition that affects approximately 6.1 million, or 9.4% 
of children in the United States according to a national parent 
survey conducted in 2016 [1].  Common symptoms of ADHD 
include difficulty in focusing on tasks, fidgeting, excessive 
movement, and forgetfulness, which interfere with daily 
functioning [1]. Recent studies have alluded to an association 
between ADHD and dementia where patients of both diseases 

exhibit similar general symptoms of memory and attention 
problems [2-6].  Dementia is an increasing problem in the 
United States due to the aging population, with an estimated 5 
million adults suffering from dementia in 2014 [5].  
Conventional treatments of ADHD include behavioral therapy 
and medications [1].  No such treatments exist yet for dementia 
[5]. In the past few decades, multiple studies demonstrated the 
insufficient efficacy of extant working memory training of 
ADHD [7, 8]. One hypothesis suggested that the discrepancy 
may reflect the inadequate targeting of the behavior of these 
disorders with regard to functional impairment with specific 
working memory (WM) components [9]. To enhance the 
effectiveness of working memory training, an adaptive design of 
working memory cognitive training in specific components for 
ADHD and dementia is required.   

People with ADHD or dementia experience memory 
problems, particularly in the area of working memory, which is 
a cognitive area that helps with mental storage and manipulation 
of information in cognitive processes [10-12].  Two such areas 
of WM are visual working memory (visual WM) and spatial 
working memory (SWM). The former is concerned with static 
visual image manipulation, whereas the latter is concerned with 
movement and manipulation of dynamic information [13]. SWM 
and visual WM difficulties persist in those with ADHD and 
dementia. 

Recently, the technology of Brain-Computer Interfaces 
(BCIs) is becoming a popular, promising approach for cognitive 
training/treatment. For example, it has been widely utilized for 
the treatment of ADHD [14]. BCIs record brain activity through 
various modalities (e.g., one leading modality of EEG or 
electroencephalogram) and interpret these signals to control a 
device through biofeedback [15]. Sensorimotor rhythms (SMR), 
including the mu frequency between 8 and 12 Hz, are one 
common signal that is used to assess brain activity [14]. Several 
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studies have shown that EEG biofeedback can be used to 
improve attention skills and reduce impulsivity in children with 
ADHD [16-19]. Nowadays, BCIs have been utilized widely to 
sponsor passive evaluation approaches in the improvement of 
WM skills based on its peculiarity [20, 21]. However, the 
improvement of SWM using BCI approaches is still in an infancy 
stage. 

Integrating gaming elements in cognitive training for mental 
health is not a novel approach. Multiple previous researches 
were focusing on the motivation functions in gamification which 
can be utilized in training mental diseases, specifically in ADHD 
[22]. Numerous studies have presented the gamified intervention 
as a promising technology in developing ADHD patients’ 
engagement and motivation, along with other potential skills, in 
the cognitive training process. However, the lack of statistical 
evaluations in complex scenarios limits the efficiency of 
gamified cognitive training in medical treatments, as non-
medical supplements [23].  

Based on previous research, BCI is sufficient in defining and 
evaluating working memory performance based on the simulated 
cortex patterns [24, 25]. We herein proposed and developed a 
framework for a gamified BCI platform, which may be conducive 
to engage and improve the SWM skills in vulnerable populations 
with ADHD or dementia.  
 
2. MATERIALS AND METHODS 

The methodology of this approach is to design a BCI based 
gamified control development prototype to train patients with 
ADHD or dementia suffering from SWM impairments and to 
create a demonstration game to support future study. To achieve 
these goals, a potential gamified spatial working memory 
training task was designed. Multiple previous psychological 
studies in a non BCI environment of spatial working memory 
rehabilitation focused on designing training regime in a 
simulated 3-D environment to monitor and detect repetitions in 
two simultaneous streams of spatial information (spatial location 
and scene identity) [26]. The BCI based mind-controlled 
quadrotor drone platform was recognized as a potential 
candidate that could utilize a similar study design and 3-D 
environment as presented above in a real-world space area, but 
with the potential capability of more effectively improving SWM 
ability using BCI neurofeedback. Compared with previous 
studies, the mind-controlled drone can provide real-time 
feedback in real time, besides the passive feedback. 

Conventional cognitive training (e.g. N-back paradigm) 
may not be efficient in working memory rehabilitation of ADHD 
or dementia. Murphy et al. [27] hypothesized that motor imagery 
practice may improve WM and showed that expert athletes are 
more proficient than amateurs at prioritizing specific contextual 
and motor-relevant information in order to anticipate opponents' 
offensive plays. This phenomenon indicated a possible 
interaction between motor imagery and SWM [28]. The evidence 
that motor imagery practice activates functional reorganization 
in neural systems with reduced activity in the dlPFC (WM 
center) also supports the hypothesis in a flank direction. 

However, few studies have examined the interaction between 
SMR and SWM. In this article, an approach of using motor 
imagery as the rhythm of SWM training was developed.   

 
 
 

2.1 Hardware   
To explore a convenient, portable and affordable prototype 

that can be utilized in daily cognitive training with enough 
capability to achieve expected performance, Emotiv Epoc+ and 
DJI Tello were selected to promote the prototype.  

Emotiv Epoc+: Emotiv Epoc+ is a 14 channel EEG 
recording device produced by bioinformatics company 
EMOTIV based in San Francisco, CA [29]. The 14 electrodes 
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) 
are mainly located on the motor cortex regions which would be 
able to provide desired EEG information. Emotiv adopts saline 
soaked felt pads as the sensor materials which allows the user to 
easily wear and process the experiment. The bandwidth of 0.16-
43Hz is abundant to collect EEG brainwaves of motor imagery 
signals. 

 
 

Figure 1. Emotiv Epoc+ (a) and its sensors and references locations 
(b); figures copied from [30]. 

 
DJI Tello: The Tello DJI is a highly cost-effective quadrotor 

drone with simple controls designed that allows children and 
aging people to use [31]. Suitable propeller guards ensure 
enough safety protection to demonstrate the mind-controlled 
drone around hazards. 

  
2.2 Software 

The purpose of this platform is to integrate the EEG 
recording device and the quadrotor drone. Two SDK software, 
EmotivBCI and TelloPy, were utilized in this platform.    

EmotivBCI: The company EMOTIV implements a 
commercial software for BCI called EmotivBCI, which is 
suitable with Emotiv Epoc+. This software can be used to detect 
participants’ cognitive state by trigger events. By using cognitive 
state records as the training set, real time tune applications can 
be applied in translating the state recordings into mind 
commands by their performance metrics [30].  

In this platform, EmotivBCI was considered to collect 
participants’ cognitive states in various SMR strategies, and 
transform the states recording to a pattern shown as the moving 
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command (e.g., Push, Pull, Lift, Drop) which could then be sent 
to the quadrotor drone as the control command. 

 
 
 

 
 

Figure 2. GUI of Emotiv BCI; figure copied from [30]. 
 

TelloPy: An SDK kit called TelloPy is developed for the DJI 
Tello quadrotor drone [27] that allows to promote applications 
of DJI Tello without using exogenous communication interfaces. 
The TelloPy connects drones by a Wi-Fi UDP port which allows 
users to send text commands from other devices. 

These pieces of software contributed to the platform by 
processing the motor imagery cognitive status, transforming this 
status to drone adapted commands and sending/receiving text 
commands through UDP port.    

 
2.3 Node-Red  

Node-RED is an open source flow-based graphical user 
interface (GUI) to unify Internet of Things (IoT) hardware 
devices and Application Programming Interfaces (APIs) 
developed by IBM Emerging Technology [32].  Node-RED is 
built based on the Node.js platform and with a free JavaScript 
based structure to allow users to develop IoT interaction 
applications in a browser-based flow GUI editor. JavaScript 
Object Notation (JSON) is used to store Node flows which can 
control devices to process data, control other devices and send 
alerts [33]. This tool enables users to visually create real-time 
applications on end-devices. 

EmotivBCI provides a Node-RED based custom library in 
the Node-RED Toolbox which enables users to create 
applications and integrations in a visual interface. The Node-
RED Toolbox allows the EmotivBCI to send adapted commands 
via Wi-Fi UDP or TCP ports to Node-red to connect other end-
devices which can receive commands.  

In this platform, Node-red is used to interact between 
EmotivBCI and TelloPy by the UDP protocol. The information 
flow from Emotiv headset to the Tello drone is shown in figure 
3.  

 

 
Figure 3: Illustration of information flow in the gamified BCI 

 

2.4 Game Implementation 
To accomplish the prototype of using sensorimotor imagery 

rhythms to control a drone for SWM cognitive training, two main 
designing protocols were required: spatial location detection and 
scene identity treatment. 

Spatial location detection: In purpose of setting a 
circumstance for spatial location detection, the training was 
proposed to settle the target in a location of a 3-D environment. 
Reflecting on using the air drone as the target, we designed to 
allow the user to control the drone in an open space area to reach 
a predesigned location. To simplify the experiment and increase 
the safety, the participants can only control the drone in the 
vertical direction. 

Scene identity treatment:  SMR was applied to distinguish 
cognitive states and control the drone. Considering the cognitive  
capabilities of ADHD and dementia patients, a simple SMR 
strategy is essential in this prototype. Therefore, relaxation and 
imaging grabbing both hands were selected based on their 
significant cognitive states’ disparities [34].  
 

 
 

 
 

 
 

Figure 4: Node-Red GUI flow with different functions: (a) Drone’s 
Take Off and Emergency command, (b) Connection between Emotiv 
Epoc+ headset and Tello drone, (c) Drone’s Height measure and goal 

Achievement 
 

To integrate two protocols, a drone would be controlled by 
the participant using their SMR. After the training process, the 
participant would be able to control the drone in the vertical 
direction by two states: Imaging grabbing both hands and 
relaxing. In the controlling process, when the participant is 
imaging grabbing both hands, the drone will fly up, and drop 
down otherwise. The participant is required to control the height 
of the drone by using this strategy until they reach the height 
which they were informed of at the beginning of the experiment.  
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   As a competitive gamified cognitive training platform, the 
mind-controlled drone game was proposed to adjust the 
difficulty to keep the engagement and motivation of participants. 
To achieve this, the weights of SMR command activation 
threshold are adjusted based on the performance of user goal 
achievement. If the user achieves the settled location on time, the 
threshold of sending the flying up command will increase. 
Otherwise, the threshold of the relaxation command will 
decrease to continuously engage users in the cognitive training. 

To implement the SMR training protocol, a Node-Red based 
GUI training application was designed. In the drone command 
function flow in Node-RED (as shown in Figure 4.a), two 
buttons: Take off and Emergency, were selected to defaultly 
control the drone to take off and land. In the ideal cognitive 
training process, the participant would press the takeoff button 
(as shown in Figure 5) to launch the drone. Count from the time 
of pressing the takeoff button, the participant would have 90 
seconds to control the drone to the target height, or the drone 
would drop off after 90 seconds. An emergency button was used 
to drop off the drone immediately to keep the participant safe. 

By utilizing EmotivBCI Node-RED Toolbox, two mental 
commands, push and neutral, which correspond to the grapping 
hands and relaxing imageries, would send from Emotiv Epoc+ 
to the Tello drone (as shown in Figure 4.b). When push 
(activated) or neutral command are activated, the mental 
command would transfer to raise the drone in 30 cm or lower in 
20 cm, respectively. Two threshold values of both push and 
neutral commands were set for adjusting the activation level of 
both commands to control the difficulty of the training. A height 
limit of the drone flying range was selected for the safety 
concerns.  

The flying height measurement system in the drone was 
used to estimate the goal of reaching height. As shown in Figure 
4.c, the current height of the drone would send from the UDP 
port to the Node-Red and update whenever the drone is activated 
by the mental command. When the drone reaches to the desired 
height in time, the water jar shown in the GUI would be filled 
(as shown in the Figure 5), and the drone would land 
automatically. The GUI dashboard would then present an 
animated image and play an applause sound to encourage the 
participant.    

 

 
 

Figure 5: GUI dashboard of the designed application 
 

3. EXPERIMENTS AND RESULTS 
 

3.1 Participants 
Participants were recruited to test the effectiveness and user 

acceptance of the developed mind-controlled drone game. The 
recruitment was conducted through classroom announcements 
and flyers in the University of Tennessee, Knoxville, following 
the requirement of institutional review boards. Finally, 20 
healthy adults (18-60 years, 12 males) participated in our 
experiments, with no history of neuropsychiatric disorders. All 
the participants were provided with a detailed description of the 
experimental goal and procedures before provided with written 
informed consent. They were also told that they could quit the 
experiments whenever they wanted, with no punishment. All the 
participants have normal or corrected-to-normal vision. 

 
3.2 Experimental Setup 

After signing the written informed consent, the participant 
will sit on a comfortable chair, in front of the computer screen. 
The observer will help the participants put on the EEG headset, 
ensuring a good comfortability and contact quality of at least 98% 
by using saline liquid and adjusting the position of electrodes. 
Furthermore, the participant is suggested not to make large body 
movements, to make sure there is consistent contact quality 
during the experiments. Then, the observer will open the 
software, EmotivBCI, and create an individual file for each 
participant, with a file name of the participant’s name. Later the 
participant will be presented the GUI for training. Firstly, the 
participant will do the resting-state training five times, each of 
which lasts for 8 seconds. In the resting-state training, the 
participant will be guided to relax. Then the participant will 
perform the 8-second, action-state training five times, during 
which they will be presented with an interactive image. When 
presented with this image, the participant will imagine using 
their hands to pull/grasp the cube. Later, if the training goal has 
been achieved, the participant will directly go to the next stage, 
controlling the drone with their mind. Otherwise, the participant 
will be suggested to perform another action-state training. 

During the stage of controlling the drone, the participant will 
be presented with a changing cylinder. They will be informed 
that the greater you imagine using your hands to pull an object, 
the greater the shaded area will become and the higher the drone 
will fly. If needed, the participants will be provided with 
encouraging information, such as, “Keep going! You’re almost 
there!”. After the participant achieves the goal, an animated 
image will appear as well as a sound for. However, if the 
participant cannot achieve the goal within 90 seconds, the drone 
will land automatically. After the experiments, the participants 
will be asked if they feel the movement of the drone is in their 
mind control. 
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Figure 6: Illustration of experiment set up 

 
3.3 Results 

All the participants were amazed by and interested in this 
mind-controlled drone game. And most of them gave astounded 
feedback that they were controlling the drone’s movement by 
using their mind, although some participants could not achieve 
the goal within 90 seconds. 
Some single EEG data were recorded and analyzed as a sample, 
and the result reflects two significantly different patterns 
between the state of relaxation and imaging grabbing hands in 
mu frequency, as shown in Figure 7.  
 

     
 

Figure 7: Cortex pattern examples in grabbing hands imagery and 
relaxing imagery  

 
4. CONCLUSION 

In this paper, we developed a mind-controlled drone game 
prototype for cognitive training and rehabilitation. We tested this 
system by designing and running a real-time training task, which 
will be utilized in processing the usability in an ADHD and 
dementia cognitive training environment. We have tested the 
BCI game on dozens of participants to ensure the acceptability, 
robustness, and positive user experience of the system. In future 
work, we will collect and analyze EEG records to study the 
efficacy and statistical significance of the game system in 
cognitive training. The next step of this project is to utilize this 
platform as an experimental tool to compare the cortex pattern in 
the training process between ADHD or dementia patients and 
normal people. 
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